The Transition to Chaos von Linda Reichl | In Conservative Classical Systems: Quantum Manifestations | ISBN 9781475743524

The Transition to Chaos

In Conservative Classical Systems: Quantum Manifestations

von Linda Reichl
Buchcover The Transition to Chaos | Linda Reichl | EAN 9781475743524 | ISBN 1-4757-4352-1 | ISBN 978-1-4757-4352-4

From the reviews of the second edition:

„This book is an expanded and updated version … from a previous edition and reviews results on the manifestation of chaos in classical and quantum mechanics. … A very wide range of topics is covered in the book, which thus can be used as preliminary reading for research areas … . The book can also be considered as a helpful companion both for mathematicians and for physicists. … Many technical details and background notions can be found in a rich complement of appendices.“ (Guido Gentile, Mathematical Reviews, Issue 2006 c)

The Transition to Chaos

In Conservative Classical Systems: Quantum Manifestations

von Linda Reichl
resonances. Nonlinear resonances cause divergences in conventional perturbation expansions. This occurs because nonlinear resonances cause a topological change locally in the structure of the phase space and simple perturbation theory is not adequate to deal with such topological changes. In Sect. (2.3), we introduce the concept of integrability. A sys tem is integrable if it has as many global constants of the motion as degrees of freedom. The connection between global symmetries and global constants of motion was first proven for dynamical systems by Noether [Noether 1918]. We will give a simple derivation of Noether's theorem in Sect. (2.3). As we shall see in more detail in Chapter 5, are whole classes of systems which are now known to be inte there grable due to methods developed for soliton physics. In Sect. (2.3), we illustrate these methods for the simple three-body Toda lattice. It is usually impossible to tell if a system is integrable or not just by looking at the equations of motion. The Poincare surface of section provides a very useful numerical tool for testing for integrability and will be used throughout the remainder of this book. We will illustrate the use of the Poincare surface of section for classic model of Henon and Heiles [Henon and Heiles 1964].