Information Theory in Computer Vision and Pattern Recognition von Francisco Escolano Ruiz | ISBN 9781848822979

Information Theory in Computer Vision and Pattern Recognition

von Francisco Escolano Ruiz, Pablo Suau Pérez und Boyán Ivanov Bonev, Vorwort von Alan L. Yuille
Mitwirkende
Autor / AutorinFrancisco Escolano Ruiz
Vorwort vonAlan L. Yuille
Autor / AutorinPablo Suau Pérez
Autor / AutorinBoyán Ivanov Bonev
Buchcover Information Theory in Computer Vision and Pattern Recognition | Francisco Escolano Ruiz | EAN 9781848822979 | ISBN 1-84882-297-9 | ISBN 978-1-84882-297-9
Leseprobe

Information Theory in Computer Vision and Pattern Recognition

von Francisco Escolano Ruiz, Pablo Suau Pérez und Boyán Ivanov Bonev, Vorwort von Alan L. Yuille
Mitwirkende
Autor / AutorinFrancisco Escolano Ruiz
Vorwort vonAlan L. Yuille
Autor / AutorinPablo Suau Pérez
Autor / AutorinBoyán Ivanov Bonev

Information theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information…), principles (maximum entropy, minimax entropy…) and theories (rate distortion theory, method of types…).

This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to across-fertilization of both areas.