Geometric and Analytic Aspects of Functional Variational Principles von Rupert Frank | Cetraro, Italy 2022 | ISBN 9783031676017

Geometric and Analytic Aspects of Functional Variational Principles

Cetraro, Italy 2022

von Rupert Frank, Giuseppe Mingione, Lubos Pick, Ovidiu Savin und Jean Van Schaftingen, herausgegeben von Andrea Cianchi, Vladimir Maz'ya und Tobias Weth
Mitwirkende
Herausgegeben vonAndrea Cianchi
Herausgegeben vonVladimir Maz'ya
Herausgegeben vonTobias Weth
Autor / AutorinRupert Frank
Autor / AutorinGiuseppe Mingione
Autor / AutorinLubos Pick
Autor / AutorinOvidiu Savin
Autor / AutorinJean Van Schaftingen
Buchcover Geometric and Analytic Aspects of Functional Variational Principles | Rupert Frank | EAN 9783031676017 | ISBN 3-031-67601-7 | ISBN 978-3-031-67601-7

Geometric and Analytic Aspects of Functional Variational Principles

Cetraro, Italy 2022

von Rupert Frank, Giuseppe Mingione, Lubos Pick, Ovidiu Savin und Jean Van Schaftingen, herausgegeben von Andrea Cianchi, Vladimir Maz'ya und Tobias Weth
Mitwirkende
Herausgegeben vonAndrea Cianchi
Herausgegeben vonVladimir Maz'ya
Herausgegeben vonTobias Weth
Autor / AutorinRupert Frank
Autor / AutorinGiuseppe Mingione
Autor / AutorinLubos Pick
Autor / AutorinOvidiu Savin
Autor / AutorinJean Van Schaftingen

This book is dedicated to exploring optimization problems of geometric-analytic nature, which are fundamental to tackling various unresolved questions in mathematics and physics. These problems revolve around minimizing geometric or analytic quantities, often representing physical energies, within prescribed collections of sets or functions. They serve as catalysts for advancing methodologies in calculus of variations, partial differential equations, and geometric analysis. Furthermore, insights from optimal functional-geometric inequalities enhance analytical problem-solving endeavors.

The contributions focus on the intricate interplay between these inequalities and problems of differential and variational nature. Key topics include functional and geometric inequalities, optimal norms, sharp constants in Sobolev-type inequalities, and the regularity of solutions to variational problems. Readers will gain a comprehensive understanding of these concepts, deepening their appreciation for their relevance in mathematical and physical inquiries.