Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits von Alexis De Vos | ISBN 9783031798955

Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits

von Alexis De Vos, Stijn De Baerdemacker und Yvan Van Rentergem
Mitwirkende
Autor / AutorinAlexis De Vos
Autor / AutorinStijn De Baerdemacker
Autor / AutorinYvan Van Rentergem
Buchcover Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits | Alexis De Vos | EAN 9783031798955 | ISBN 3-031-79895-3 | ISBN 978-3-031-79895-5

Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits

von Alexis De Vos, Stijn De Baerdemacker und Yvan Van Rentergem
Mitwirkende
Autor / AutorinAlexis De Vos
Autor / AutorinStijn De Baerdemacker
Autor / AutorinYvan Van Rentergem

At first sight, quantum computing is completely different from classical computing. Nevertheless, a link is provided by reversible computation.

Whereas an arbitrary quantum circuit, acting on ?? qubits, is described by an ?? × ?? unitary matrix with ??=2??, a reversible classical circuit, acting on ?? bits, is described by a 2?? × 2?? permutation matrix. The permutation matrices are studied in group theory of finite groups (in particular the symmetric group ????); the unitary matrices are discussed in group theory of continuous groups (a. k. a. Lie groups, in particular the unitary group U(??)).

Both the synthesis of a reversible logic circuit and the synthesis of a quantum logic circuit take advantage of the decomposition of a matrix: the former of a permutation matrix, the latter of a unitary matrix. In both cases the decomposition is into three matrices. In both cases the decomposition is not unique.