Variational and Information Flows in Machine Learning and Optimal Transport von Wuchen Li | ISBN 9783031927317

Variational and Information Flows in Machine Learning and Optimal Transport

von Wuchen Li, Bernhard Schmitzer, Gabriele Steidl, François-Xavier Vialard und Christian Wald
Mitwirkende
Autor / AutorinWuchen Li
Autor / AutorinBernhard Schmitzer
Autor / AutorinGabriele Steidl
Autor / AutorinFrançois-Xavier Vialard
Autor / AutorinChristian Wald
Buchcover Variational and Information Flows in Machine Learning and Optimal Transport | Wuchen Li | EAN 9783031927317 | ISBN 3-031-92731-1 | ISBN 978-3-031-92731-7

Variational and Information Flows in Machine Learning and Optimal Transport

von Wuchen Li, Bernhard Schmitzer, Gabriele Steidl, François-Xavier Vialard und Christian Wald
Mitwirkende
Autor / AutorinWuchen Li
Autor / AutorinBernhard Schmitzer
Autor / AutorinGabriele Steidl
Autor / AutorinFrançois-Xavier Vialard
Autor / AutorinChristian Wald

This book is based on lectures given at the Mathematisches Forschungsinstitut Oberwolfach on “Computational Variational Flows in Machine Learning and Optimal Transport”. 

Variational and stochastic flows on measure spaces are ubiquitous in machine learning and generative modeling. Optimal transport and diffeomorphic flows provide powerful frameworks to analyze such trajectories of distributions with elegant notions from differential geometry, such as geodesics, gradient and Hamiltonian flows. Recently, mean field control and mean field games offered a general optimal control variational view on learning problems. The four independent chapters in this book address the question of how the presented tools lead us to better understanding and further development of machine learning and generative models.