Markov Decision Processes and Reinforcement Learning for Timely UAV-IoT Data Collection Applications von Oluwatosin Ahmed Amodu | ISBN 9783031970115

Markov Decision Processes and Reinforcement Learning for Timely UAV-IoT Data Collection Applications

von Oluwatosin Ahmed Amodu und weiteren
Mitwirkende
Autor / AutorinOluwatosin Ahmed Amodu
Autor / AutorinRaja Azlina Raja Mahmood
Autor / AutorinHuda Althumali
Autor / AutorinUmar Ali Bukar
Autor / AutorinNor Fadzilah Abdullah
Autor / AutorinChedia Jarray
Buchcover Markov Decision Processes and Reinforcement Learning for Timely UAV-IoT Data Collection Applications | Oluwatosin Ahmed Amodu | EAN 9783031970115 | ISBN 3-031-97011-X | ISBN 978-3-031-97011-5

Markov Decision Processes and Reinforcement Learning for Timely UAV-IoT Data Collection Applications

von Oluwatosin Ahmed Amodu und weiteren
Mitwirkende
Autor / AutorinOluwatosin Ahmed Amodu
Autor / AutorinRaja Azlina Raja Mahmood
Autor / AutorinHuda Althumali
Autor / AutorinUmar Ali Bukar
Autor / AutorinNor Fadzilah Abdullah
Autor / AutorinChedia Jarray

This book offers a structured exploration of how Markov Decision Processes (MDPs) and Deep Reinforcement Learning (DRL) can be used to model and optimize UAV-assisted Internet of Things (IoT) networks, with a focus on minimizing the Age of Information (AoI) during data collection. Adopting a tutorial-style approach, it bridges theoretical models and practical algorithms for real-time decision-making in tasks like UAV trajectory planning, sensor transmission scheduling, and energy-efficient data gathering. Applications span precision agriculture, environmental monitoring, smart cities, and emergency response, showcasing the adaptability of DRL in UAV-based IoT systems. Designed as a foundational reference, it is ideal for researchers and engineers aiming to deepen their understanding of adaptive UAV planning across diverse IoT applications.