Machine Learning and Knowledge Discovery in Databases. Research Track | European Conference, ECML PKDD 2025, Porto, Portugal, September 15–19, 2025, Proceedings, Part III | ISBN 9783032060662

Machine Learning and Knowledge Discovery in Databases. Research Track

European Conference, ECML PKDD 2025, Porto, Portugal, September 15–19, 2025, Proceedings, Part III

herausgegeben von Rita P. Ribeiro und weiteren
Mitwirkende
Herausgegeben vonRita P. Ribeiro
Herausgegeben vonBernhard Pfahringer
Herausgegeben vonNathalie Japkowicz
Herausgegeben vonPedro Larrañaga
Herausgegeben vonAlípio M. Jorge
Herausgegeben vonCarlos Soares
Herausgegeben vonPedro H. Abreu
Herausgegeben vonJoão Gama
Buchcover Machine Learning and Knowledge Discovery in Databases. Research Track  | EAN 9783032060662 | ISBN 3-032-06066-4 | ISBN 978-3-032-06066-2

Machine Learning and Knowledge Discovery in Databases. Research Track

European Conference, ECML PKDD 2025, Porto, Portugal, September 15–19, 2025, Proceedings, Part III

herausgegeben von Rita P. Ribeiro und weiteren
Mitwirkende
Herausgegeben vonRita P. Ribeiro
Herausgegeben vonBernhard Pfahringer
Herausgegeben vonNathalie Japkowicz
Herausgegeben vonPedro Larrañaga
Herausgegeben vonAlípio M. Jorge
Herausgegeben vonCarlos Soares
Herausgegeben vonPedro H. Abreu
Herausgegeben vonJoão Gama
This multi-volume set, LNAI 16013 to LNAI 16022, constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2025, held in Porto, Portugal, September 15–19, 2025. The 300 full papers presented here, together with 15 demo papers, were carefully reviewed and selected from 1253 submissions. The papers presented in these proceedings are from the following three conference tracks:
The Research Track in Volume LNAI 16013-16020 refers about Anomaly & Outlier Detection, Bias & Fairness, Causality, Clustering, Data Challenges, Diffusion Models, Ensemble Learning, Graph Neural Networks, Graphs & Networks, Healthcare & Bioinformatics, Images & Computer Vision, Interpretability & Explainability, Large Language Models, Learning Theory, Multimodal Data, Neuro Symbolic Approaches, Optimization, Privacy & Security, Recommender Systems, Reinforcement Learning, Representation Learning, Resource Efficiency, Robustness & Uncertainty, Sequence Models, Streaming & Spatiotemporal Data, Text & Natural Language Processing, Time Series, and Transfer & Multitask Learning. The Applied Data Science Track in Volume LNAI 16020-16022 refers about Agriculture, Food and Earth Sciences, Education, Engineering and Technology, Finance, Economy, Management or Marketing, Health, Biology, Bioinformatics or Chemistry, Industry (4.0, 5.0, Manufacturing, ...), Smart Cities, Transportation and Utilities (e. g., Energy), Sports, and Web and Social Networks The Demo Track in LNAI 16022 showcased practical applications and prototypes, accepting 15 papers from a total of 30 submissions. These proceedings cover the papers accepted in the research and applied data science tracks.