Introduction to the Theory of Toeplitz Operators with Infinite Index von Vladimir Dybin | ISBN 9783034882132

Introduction to the Theory of Toeplitz Operators with Infinite Index

von Vladimir Dybin und Sergei M. Grudsky, aus dem Russischen übersetzt von A. Iacob
Mitwirkende
Autor / AutorinVladimir Dybin
Übersetzt vonA. Iacob
Autor / AutorinSergei M. Grudsky
Buchcover Introduction to the Theory of Toeplitz Operators with Infinite Index | Vladimir Dybin | EAN 9783034882132 | ISBN 3-0348-8213-0 | ISBN 978-3-0348-8213-2

Introduction to the Theory of Toeplitz Operators with Infinite Index

von Vladimir Dybin und Sergei M. Grudsky, aus dem Russischen übersetzt von A. Iacob
Mitwirkende
Autor / AutorinVladimir Dybin
Übersetzt vonA. Iacob
Autor / AutorinSergei M. Grudsky

Inhaltsverzeichnis

  • 1 Examples of Toeplitz Operators with Infinite Index Auxiliary material.
  • 1.1 The space Lp(?, ?) and the operator S?.
  • 1.2 The classes Lp± (?, ?).
  • 1.3 Normally solvable operators.
  • 1.4 Toeplitz operators.
  • Examples of operators with infinite index.
  • 1.5 Blaschke products.
  • 1.6 An elementary singular function.
  • 1.7 Boundary degeneracy.
  • References and comments.
  • 2 Factorization and Invertibility.
  • (p, ?)-factorization and (?-theory.
  • 2.1 The space Lp(?, ?) and the operator S?.
  • 2.2 Classes of bounded and continuous functions.
  • 2.3 The classes Lp± (?, ?).
  • 2.4 The class fact(p, ?).
  • 2.5 A sufficient condition for (p, ?)-factorizability.
  • Factorization and Toeplitz operators with infinite index.
  • 2.6 Inner-outer factorization.
  • 2.7 The class fact(?, p, ?) and one-sided invertibility.
  • 2.8 Examples of functions in fact(?, p, ?).
  • 2.9 The argument of a Blaschke product.
  • 2.10 The argument of an outer function.
  • 3 Model Subspaces Model operator and model subspaces.
  • 3.1 Model subspaces.
  • 3.2 Deformation of the contour.
  • 3.3 Model subspaces on ?.
  • 3.4 Boundary behavior.
  • Bases and interpolation in model subspaces.
  • 3.5 Bases.
  • 3.6 The Carleson condition and interpolation in Hp, ? (?±).
  • 3.7 Sine-type functions.
  • 3.8 Bases of ent? e functions.
  • 3.9 Bases of meromorphic functions.
  • 3.10 Boundary interpolation.
  • 4 Toeplitz Operators with Oscillating Symbols Almost periodic discontinuities.
  • 4.1 Uniformly almost periodic functions.
  • 4.2 Model subspaces on bounded smooth curves.
  • 4.3 Standard almost periodic discontinuities.
  • 4.4 Well-posed problems for the Toeplitz equation.
  • 4.5 General discontinuities of almost periodic type.
  • Semi-almost periodic discontinuities.
  • 4.6 The class SAP.
  • 4.7 Modelfunction.
  • 4.8 Generalized factorization of SAP functions.
  • 4.9 Model subspaces.
  • Wh? l points of power type.
  • 4.10 Two-sided wh? ls.
  • 4.11 One-sided wh? ls.
  • 5 Generalized Factorization of u-periodic Functions and Matrix Functions.
  • 5.1 Block Toeplitz operators.
  • 5.2 Generalized factorization of matrix functions.
  • 5.3 u-periodic matrix functions.
  • 5.4 Infinite index of logarithmic type.
  • 5.5 Infinite index of arbitrary order.
  • 5.6 Sufficient conditions for the theorem on.
  • general oscillations. Examples.
  • 5.7 Slow oscillations.
  • 5.8 Modelling of oscillations.
  • 5.9 Generalized almost periodic discontinuities.
  • 5.10 Generalized matrix periodic discontinuities.
  • 6 Toeplitz Operators Whose Symbols Have Zeros.
  • The normalization principle.
  • 6.1 Normally solvable operators.
  • 6.2 Normalization of linear operators.
  • Normalization of Toeplitz operators.
  • 6.3 Symbols with polynomial degeneracy.
  • 6.4 Symbols with locally-polynomial degeneracy.
  • 6.5 Basic examples.
  • References.