Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems von Frederic Hélein | ISBN 9783034883306

Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems

von Frederic Hélein
Mitwirkende
Autor / AutorinFrederic Hélein
Anmerkungen vonR. Moser
Buchcover Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems | Frederic Hélein | EAN 9783034883306 | ISBN 3-0348-8330-7 | ISBN 978-3-0348-8330-6

Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems

von Frederic Hélein
Mitwirkende
Autor / AutorinFrederic Hélein
Anmerkungen vonR. Moser

Inhaltsverzeichnis

  • 1 Introduction: Surfaces with prescribed mean curvature.
  • 2 From minimal surfaces and CMC surfaces to harmonic maps.
  • 2.1 Minimal surfaces.
  • 2.2 Constant mean curvature surfaces.
  • 3 Variational point of view and Noether’s theorem.
  • 4 Working with the Hopf differential.
  • 4.1 Appendix.
  • 5 The Gauss-Codazzi condition.
  • 5.1 Appendix.
  • 6 Elementary twistor theory for harmonic maps.
  • 6.1 Appendix.
  • 7 Harmonic maps as an integrable system.
  • 7.1 Maps into spheres.
  • 7.2 Generalizations.
  • 7.3 A new setting: loop groups.
  • 7.4 Examples.
  • 8 Construction of finite type solutions.
  • 8.1 Preliminary: the Iwasawa decomposition (for)..
  • 8.2 Application to loop Lie algebras.
  • 8.3 The algorithm.
  • 8.4 Some further properties of finite type solutions.
  • 9 Constant mean curvature tori are of finite type.
  • 9.1 The result.
  • 9.2 Appendix.
  • 10 Wente tori.
  • 10.1 CMC surfaces with planar curvature lines.
  • 10.2 A system of commuting ordinary equations.
  • 10.3 Recovering a finite type solution.
  • 10.4 Spectral curves.
  • 11 Weierstrass type representations.
  • 11.1 Loop groups decompositions.
  • 11.2 Solutions in terms of holomorphic data.
  • 11.3 Meromorphic potentials.
  • 11.4 Generalizations.