Seminar on Stochastic Analysis, Random Fields and Applications | Centro Stefano Franscini, Ascona, September 1996 | ISBN 9783034886819

Seminar on Stochastic Analysis, Random Fields and Applications

Centro Stefano Franscini, Ascona, September 1996

herausgegeben von Robert Dalang, Marco Dozzi und Francesco Russo
Mitwirkende
Herausgegeben vonRobert Dalang
Herausgegeben vonMarco Dozzi
Herausgegeben vonFrancesco Russo
Buchcover Seminar on Stochastic Analysis, Random Fields and Applications  | EAN 9783034886819 | ISBN 3-0348-8681-0 | ISBN 978-3-0348-8681-9

Seminar on Stochastic Analysis, Random Fields and Applications

Centro Stefano Franscini, Ascona, September 1996

herausgegeben von Robert Dalang, Marco Dozzi und Francesco Russo
Mitwirkende
Herausgegeben vonRobert Dalang
Herausgegeben vonMarco Dozzi
Herausgegeben vonFrancesco Russo

Inhaltsverzeichnis

  • On a semigroup approach to no-arbitrage pricing theory.
  • Generalized random vector fields and Euclidean quantum vector fields.
  • Central limit theorem for the local time of a Gaussian process.
  • Explicit solutions of some fourth order partial differential equations via iterated Brownian motion.
  • A microscopic model of phase field type.
  • Ergodic backward SDE and associated PDE.
  • Statistical manifolds, self-parallel curves and learning processes.
  • Law of iterated logarithm for parabolic SPDEs.
  • Random production flows. An exactly solvable fluid model.
  • A compactness principle for bounded sequences of martingales with applications.
  • Risk minimizing hedging strategies under partial observation.
  • Multiparameter Markov processes and capacity.
  • Iterated Brownian motion and its intrinsic skeletal structure.
  • Heavy traffic and optimal control methods for a communications system.
  • Stochastic Wess-Zumino- Witten model for the measure of Kontsevitch.
  • Independence of a class of multiple stochastic integrals.
  • Existence of invariant measures for diffusion processes on Banach spaces.
  • On some new type of infinite dimensional Laplacians.
  • Stochastic PDE’s of Schrödinger type and stochastic Mehler kernels — a path integral approach.
  • Probability and quantum symmetries in a Riemannian manifold.