Forward Error Correction Based On Algebraic-Geometric Theory von Jafar A. Alzubi | ISBN 9783319082936

Forward Error Correction Based On Algebraic-Geometric Theory

von Jafar A. Alzubi, Omar A. Alzubi und Thomas M. Chen
Mitwirkende
Autor / AutorinJafar A. Alzubi
Autor / AutorinOmar A. Alzubi
Autor / AutorinThomas M. Chen
Buchcover Forward Error Correction Based On Algebraic-Geometric Theory | Jafar A. Alzubi | EAN 9783319082936 | ISBN 3-319-08293-0 | ISBN 978-3-319-08293-6

Forward Error Correction Based On Algebraic-Geometric Theory

von Jafar A. Alzubi, Omar A. Alzubi und Thomas M. Chen
Mitwirkende
Autor / AutorinJafar A. Alzubi
Autor / AutorinOmar A. Alzubi
Autor / AutorinThomas M. Chen
This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.