Basics of Aerothermodynamics von Ernst Heinrich Hirschel | ISBN 9783540265191

Basics of Aerothermodynamics

von Ernst Heinrich Hirschel
Buchcover Basics of Aerothermodynamics | Ernst Heinrich Hirschel | EAN 9783540265191 | ISBN 3-540-26519-8 | ISBN 978-3-540-26519-1

From the reviews:

„The book has the merit to cover in a reasonable volume a wide range of topics which are the basics of aerothermodynamics. … For teaching and self-study purposes, problems are given at the end of many chapters. … the author has much experience in teaching. The result is a valuable book that is recommended to people technically interested in the field of high-speed flows, including graduate or doctoral students and engineers.“ (Jean Cousteix, SIAM Reviews, Vol. 47 (4), 2005)

Basics of Aerothermodynamics

von Ernst Heinrich Hirschel
The last two decades have brought two important developments for aeroth- modynamics. One is that airbreathing hypersonic flight became the topic of technology programmes and extended system studies. The other is the emergence and maturing of the discrete numerical methods of aerodyn- ics/aerothermodynamics complementary to the ground-simulation facilities, with the parallel enormous growth of computer power. Airbreathing hypersonic flight vehicles are, in contrast to aeroassisted re-entry vehicles, drag sensitive. They have, further, highly integrated lift and propulsion systems. This means that viscous eflFects, like boundary-layer development, laminar-turbulent transition, to a certain degree also strong interaction phenomena, are much more important for such vehicles than for re-entry vehicles. This holds also for the thermal state of the surface and thermal surface effects, concerning viscous and thermo-chemical phenomena (more important for re-entry vehicles) at and near the wall. The discrete numerical methods of aerodynamics/aerothermodynamics permit now - what was twenty years ago not imaginable - the simulation of high speed flows past real flight vehicle configurations with thermo-chemical and viscous effects, the description of the latter being still handicapped by in sufficient flow-physics models. The benefits of numerical simulation for flight vehicle design are enormous: much improved aerodynamic shape definition and optimization, provision of accurate and reliable aerodynamic data, and highly accurate determination of thermal and mechanical loads. Truly mul- disciplinary design and optimization methods regarding the layout of thermal protection systems, all kinds of aero-servoelasticity problems of the airframe, et cetera, begin now to emerge.