Mathematical Studies of Information Processing | Proceedings of the International Conference, Kyoto, Japan, August 23-26, 1978 | ISBN 9783540350101

Mathematical Studies of Information Processing

Proceedings of the International Conference, Kyoto, Japan, August 23-26, 1978

herausgegeben von E.K. Blum, M. Paul und S. Takasu
Mitwirkende
Herausgegeben vonE.K. Blum
Herausgegeben vonM. Paul
Herausgegeben vonS. Takasu
Buchcover Mathematical Studies of Information Processing  | EAN 9783540350101 | ISBN 3-540-35010-1 | ISBN 978-3-540-35010-1

Mathematical Studies of Information Processing

Proceedings of the International Conference, Kyoto, Japan, August 23-26, 1978

herausgegeben von E.K. Blum, M. Paul und S. Takasu
Mitwirkende
Herausgegeben vonE.K. Blum
Herausgegeben vonM. Paul
Herausgegeben vonS. Takasu

Inhaltsverzeichnis

  • On the abstract specification and formal analysis of synchronization properties of concurrent systems.
  • On the formal specification and analysis of loosely connected processes.
  • Synchronized parallel computation and slowdown of translators.
  • Nondeterminism, parallelism and intermittent assertions.
  • A formal specification technique for abstract data types with parallelism.
  • Verifying parallel programs with resource allocation.
  • Equivalent key problem of the relational database model.
  • A file organization suitable for relational database operations.
  • Specified programming.
  • A calculus for proving properties of while-programs.
  • „E-correctness“ of a set of „computation processes“.
  • Program synthesis through Gödel's interpretation.
  • The vienna development method (VDM).
  • On a uniform formal description of data structures.
  • Extending an implementation language to a specification language.
  • Some design principles and theory for OBJ-0, a language to express and execute algebraic specifications of programs.
  • The specification and proof of correctness of interactive programs.
  • On a theory of decision problems in programming languages.
  • A representative strong equivalence class for accessible flowchart schemes.
  • Recursive programs as functions in a first order theory.