Analytical Methods in Probability Theory | Proceedings of the Conference Held at Oberwolfach, Germany, June 9–14, 1980 | ISBN 9783540367857

Analytical Methods in Probability Theory

Proceedings of the Conference Held at Oberwolfach, Germany, June 9–14, 1980

herausgegeben von Daniel Dugue, E. Lukacs und V. K. Rohatgi
Mitwirkende
Herausgegeben vonDaniel Dugue
Herausgegeben vonE. Lukacs
Herausgegeben vonV. K. Rohatgi
Buchcover Analytical Methods in Probability Theory  | EAN 9783540367857 | ISBN 3-540-36785-3 | ISBN 978-3-540-36785-7

Analytical Methods in Probability Theory

Proceedings of the Conference Held at Oberwolfach, Germany, June 9–14, 1980

herausgegeben von Daniel Dugue, E. Lukacs und V. K. Rohatgi
Mitwirkende
Herausgegeben vonDaniel Dugue
Herausgegeben vonE. Lukacs
Herausgegeben vonV. K. Rohatgi

Inhaltsverzeichnis

  • Reduction of weak limit problems by transformations.
  • Characterizations of unimodal distribution functions.
  • Random sampling from a continuous parameter stochastic process.
  • On a test for goodness-of-fit based on the empirical probability measure of Foutz and testing for exponentiality.
  • A theorem of Deny with applications to characterization problems.
  • Multivariate tests of independence.
  • Local limit theorem for sample extremes.
  • On a simultaneous characterization of the poisson law and the gamma distribution.
  • Self-decomposable discrete distributions and branching processes.
  • An application of the method of moments to the central limit theorem on hyperbolic spaces.
  • Convergences stochastiques des processus ponctuels composes a signe.
  • Decomposition of probability measures on locally compact abelian groups.
  • Problemes classiques de probabilite sur un couple de Gelfand.
  • Construction of characterization theorems.
  • Local time and invariance.
  • On the rate of convergence in the central limit theorem.
  • Almost certain behavior of row sums of double arrays.
  • Extensions of Lukacs’ characterization of the gamma distribution.
  • On the unimodality of infinitely divisible distribution functions II.