Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics | Vol. I General Lectures. Fundamental Numerical Techniques | ISBN 9783540383772

Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics

Vol. I General Lectures. Fundamental Numerical Techniques

herausgegeben von Henri Cabannes und Roger Temam
Mitwirkende
Herausgegeben vonHenri Cabannes
Herausgegeben vonRoger Temam
Buchcover Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics  | EAN 9783540383772 | ISBN 3-540-38377-8 | ISBN 978-3-540-38377-2

Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics

Vol. I General Lectures. Fundamental Numerical Techniques

herausgegeben von Henri Cabannes und Roger Temam
Mitwirkende
Herausgegeben vonHenri Cabannes
Herausgegeben vonRoger Temam

Inhaltsverzeichnis

  • Review of methods for solving the Navier-Stokes equations.
  • Atmospheric dynamics and the numerical simulation of atmospheric circulation.
  • Methods for (generally unsteady) flows with shocks: A brief survey.
  • Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems.
  • A comparative study of difference schemes for the solution of.
  • Approximation des fonctions a divergence nulle par la methode des elements finis.
  • A numerical procedure for a free boundary value problem in the hodograph plane.
  • A numerical study of a mildly non-linear fartiai differential equation.
  • Numerical experiments with the compressible navier-stokes equations.
  • An improved constant time technique for the method of characteristics.
  • Finite difference methods for the steady-state navier-stokes equations.
  • A predictor-corrector method for three coordinate viscous flows.
  • Processing and analysis of computation results for multidimensional problems of aerohydrodynamics.
  • Towards the ultimate conservative difference scheme I. The quest of monotonicity.
  • Positive conservative second and higher order difference schemes for the equations of fluid dynamics.
  • Schemas numeriques invariants de groupe pour les equations de la dynamique de gaz.