Optimization and Optimal Control | Proceedings of a Conference Held at Oberwolfach, March 16–22, 1980 | ISBN 9783540385912

Optimization and Optimal Control

Proceedings of a Conference Held at Oberwolfach, March 16–22, 1980

herausgegeben von A. Auslender, W. Oettli und J. Stoer
Mitwirkende
Herausgegeben vonA. Auslender
Herausgegeben vonW. Oettli
Herausgegeben vonJ. Stoer
Buchcover Optimization and Optimal Control  | EAN 9783540385912 | ISBN 3-540-38591-6 | ISBN 978-3-540-38591-2

Optimization and Optimal Control

Proceedings of a Conference Held at Oberwolfach, March 16–22, 1980

herausgegeben von A. Auslender, W. Oettli und J. Stoer
Mitwirkende
Herausgegeben vonA. Auslender
Herausgegeben vonW. Oettli
Herausgegeben vonJ. Stoer

Inhaltsverzeichnis

  • Quasi-convex duality.
  • Some differentiability properties of quasiconvex functions ? n.
  • On optimality conditions for infinite programs.
  • Optimality conditions for discrete nonlinear norm-approximation problems.
  • Feasible variable metric method for nonlinearly constrained problems.
  • A note on convergence proofs for Shor-Khachian-Methods.
  • A view of line-searches.
  • II-Approximation and decomposition of large-scale problems.
  • On the existence of Lagrange multipliers in nonlinear programming in Banach spaces.
  • Convexifiable pseudoconvex and strictly pseudoconvex C2-functions.
  • Organization, test, and performance of optimization programs.
  • Han's method without solving QP.
  • Necessary optimality conditions for differential games with transition surfaces.
  • Regularization of Lagrange multipliers for time delay systems with fixed final state.
  • Numerical solution of linear and nonlinear parabolic control problems.
  • Survey on existence results in nonlinear optimal stochastic control of semimartingales.
  • Time-minimal controllability in the view of optimization.
  • On the choice of minimization algorithms in parametric optimal control problems.
  • Strong duality, weak duality and penalization for a state constrained parabolic control problem.
  • Finite difference approximations to constrained optimal control problems.