Probability Measures on Groups | Proceedings of the Sixth Conference Held at Oberwolfach, Germany, June 28-July 4, 1981 | ISBN 9783540392064

Probability Measures on Groups

Proceedings of the Sixth Conference Held at Oberwolfach, Germany, June 28-July 4, 1981

herausgegeben von H. Heyer
Buchcover Probability Measures on Groups  | EAN 9783540392064 | ISBN 3-540-39206-8 | ISBN 978-3-540-39206-4

Probability Measures on Groups

Proceedings of the Sixth Conference Held at Oberwolfach, Germany, June 28-July 4, 1981

herausgegeben von H. Heyer

Inhaltsverzeichnis

  • Infinitely divisible measures on hypergroups.
  • Poisson measures on Banach lattices.
  • First elements of a theory of quantum mechanical limit distributions.
  • Sur le theoreme de dichotomie pour les marches aleatoires sur les espaces homogenes.
  • Continuous cohomology, infinitely divisible positive definite functions and continuous tensor products for SU(1, 1).
  • Canonical representation of the Bernoulli process.
  • Capacites, mouvement Brownien et problemen de l’epine de Lebesgue sur les groupes de Lie nilpotents.
  • Stable Banach spaces, random measures and Orlicz function spaces.
  • Autocorrelation, equipartition of energy, and random evolutions.
  • Stable probabilities on locally compact groups.
  • Zeitgeordnete Momente des Weissen klassischen und Des Weissen Quantenrauschens.
  • Some zero-one laws for semistable and self-decomposable measures on locally convex spaces.
  • Convolution powers of probability measures on locally compact semigroups.
  • Theoremes limites pour les produits de matrices aleatoires.
  • Local tightness of convolution semigroups over locally compact groups.
  • Convergence of nonhomogeneous stochastic chains with countable states: An application to measures on semigroups.
  • Infinite convolution and shift-convergence of measures on topological groups.
  • Irreducible and prime distributions.
  • Continuous hemigroups of probability measures on a Lie group.
  • Potential theory for recurrent symmetric infinitely divisible processes.
  • Lois de zero-un et lois semi-stables dans un groupe.
  • A local limit theorem for random walks on certain discrete groups.