Category Theory | Proceedings of the International Conference held in Como, Italy, July 22-28, 1990 | ISBN 9783540464358

Category Theory

Proceedings of the International Conference held in Como, Italy, July 22-28, 1990

herausgegeben von Aurelio Carboni, Maria C. Pedicchio und Giuseppe Rosolini
Mitwirkende
Herausgegeben vonAurelio Carboni
Herausgegeben vonMaria C. Pedicchio
Herausgegeben vonGiuseppe Rosolini
Buchcover Category Theory  | EAN 9783540464358 | ISBN 3-540-46435-2 | ISBN 978-3-540-46435-8

Category Theory

Proceedings of the International Conference held in Como, Italy, July 22-28, 1990

herausgegeben von Aurelio Carboni, Maria C. Pedicchio und Giuseppe Rosolini
Mitwirkende
Herausgegeben vonAurelio Carboni
Herausgegeben vonMaria C. Pedicchio
Herausgegeben vonGiuseppe Rosolini
With one exception, these papers are original and fully
refereed research   articles on various applications of
Category Theory to Algebraic Topology,   Logic and Computer
Science. The exception is an outstanding and lengthy      survey
paper by Joyal/Street (80 pp) on a growing subject: it gives
an   account of classical Tannaka duality in such a way as to
be accessible to   the general mathematical reader, and to
provide a key for entry to more      recent developments and
quantum groups. No expertise in either                     representation theory
or category theory is assumed. Topics such as the      Fourier
cotransform, Tannaka duality for homogeneous spaces,                        braided
tensor categories, Yang-Baxter operators, Knot invariants
and   quantum groups are introduced and studies.
From the Contents: P. J. Freyd:   Algebraically complete
categories.- J. M. E. Hyland: First steps in synthetic domain
theory.- G. Janelidze, W. Tholen: How algebraic is                           the
change-of-base functor?.- A. Joyal, R. Street: An
introduction to   Tannaka duality and quantum groups.- A.
Joyal, M. Tierney: Strong stacks andclassifying spaces.- A.
Kock: Algebras for the partial map classifier         monad.- F. W.
Lawvere: Intrinsic co-Heyting boundaries and the                     Leibniz
rule in certain toposes.- S. H. Schanuel: Negative sets                     have
Euler characteristic and dimension.-