Category Theory and Computer Science | Manchester, UK, September 5-8, 1989. Proceedings | ISBN 9783540467403

Category Theory and Computer Science

Manchester, UK, September 5-8, 1989. Proceedings

herausgegeben von David H. Pitt, David E. Rydeheard, Peter Dybjer, Andrew Pitts und Axel Poigne
Mitwirkende
Herausgegeben vonDavid H. Pitt
Herausgegeben vonDavid E. Rydeheard
Herausgegeben vonPeter Dybjer
Herausgegeben vonAndrew Pitts
Herausgegeben vonAxel Poigne
Buchcover Category Theory and Computer Science  | EAN 9783540467403 | ISBN 3-540-46740-8 | ISBN 978-3-540-46740-3

Category Theory and Computer Science

Manchester, UK, September 5-8, 1989. Proceedings

herausgegeben von David H. Pitt, David E. Rydeheard, Peter Dybjer, Andrew Pitts und Axel Poigne
Mitwirkende
Herausgegeben vonDavid H. Pitt
Herausgegeben vonDavid E. Rydeheard
Herausgegeben vonPeter Dybjer
Herausgegeben vonAndrew Pitts
Herausgegeben vonAxel Poigne

Inhaltsverzeichnis

  • Coherence and valid isomorphism in closed categories applications of proof theory to category theory in a computer sclentist perspective.
  • An algebraic view of interleaving and distributed operational semantics for CCS.
  • Temporal structures.
  • Compositional relational semantics for indeterminate dataflow networks.
  • Operations on records.
  • Projections for polymorphic strictness analysis.
  • A category-theoretic account of program modules.
  • A note on categorical datatypes.
  • A set constructor for inductive sets in Martin-Löf's type theory.
  • Independence results for calculi of dependent types.
  • Quantitative domains, groupoids and linear logic.
  • Graded multicategories of polynomial-time realizers.
  • On the semantics of second order lambda calculus: From bruce-meyer-mitchell models to hyperdoctrine models and vice-versa.
  • Dictoses.
  • Declarative continuations: An investigation of duality in programming language semantics.
  • Logic representation in LF.
  • Unification properties of commutative theories: A categorical treatment.
  • An abstract formulation for rewrite systems.
  • From petri nets to linear logic.
  • A dialectica-like model of linear logic.
  • A final coalgebra theorem.