Functional-Analytic Methods for Partial Differential Equations | Proceedings of a Conference and a Symposium held in Tokyo, Japan, July 3-9, 1989 | ISBN 9783540468189

Functional-Analytic Methods for Partial Differential Equations

Proceedings of a Conference and a Symposium held in Tokyo, Japan, July 3-9, 1989

herausgegeben von Hiroshi Fujita, Teruo Ikebe und Shige T. Kuroda
Mitwirkende
Herausgegeben vonHiroshi Fujita
Herausgegeben vonTeruo Ikebe
Herausgegeben vonShige T. Kuroda
Buchcover Functional-Analytic Methods for Partial Differential Equations  | EAN 9783540468189 | ISBN 3-540-46818-8 | ISBN 978-3-540-46818-9

Functional-Analytic Methods for Partial Differential Equations

Proceedings of a Conference and a Symposium held in Tokyo, Japan, July 3-9, 1989

herausgegeben von Hiroshi Fujita, Teruo Ikebe und Shige T. Kuroda
Mitwirkende
Herausgegeben vonHiroshi Fujita
Herausgegeben vonTeruo Ikebe
Herausgegeben vonShige T. Kuroda

Inhaltsverzeichnis

  • Spectral concentration for dense point spectrum.
  • Behaviour of a semilinear periodic-parabolic problem when a parameter is small.
  • On smoothing property of Schrödinger propagators.
  • A coin tossing problem of R. L. Rivest.
  • Liapunov functions and monotonicity in the Navier-Stokes equation.
  • Singular solutions of a nonlinear elliptic equation and an infinite dimensional dynamical system.
  • to geometric potential theory.
  • KDV, BO and friends in weighted Sobolev spaces.
  • The square root problem for elliptic operators a survey.
  • The initial value problem for a class of nonlinear dispersive equations.
  • On Schrödinger operators with magnetic fields.
  • Existence of bound states for double well potentials and the Efimov effect.
  • High energy asymptotics for the total scattering phase in potential scattering theory.
  • Feynman path integral to relativistic quantum mechanics.
  • On the distribution of poles of the scattering matrix for several convex bodies.
  • Smoothing effect for the Schrödinger evolution equations with electric fields.
  • Blow-up of solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary condition.