Real Analytic and Algebraic Geometry | Proceedings of the Conference held in Trento, Italy, October 3-7, 1988 | ISBN 9783540469520

Real Analytic and Algebraic Geometry

Proceedings of the Conference held in Trento, Italy, October 3-7, 1988

herausgegeben von Margherita Galbiati und Alberto Tognoli
Mitwirkende
Herausgegeben vonMargherita Galbiati
Herausgegeben vonAlberto Tognoli
Buchcover Real Analytic and Algebraic Geometry  | EAN 9783540469520 | ISBN 3-540-46952-4 | ISBN 978-3-540-46952-0

Real Analytic and Algebraic Geometry

Proceedings of the Conference held in Trento, Italy, October 3-7, 1988

herausgegeben von Margherita Galbiati und Alberto Tognoli
Mitwirkende
Herausgegeben vonMargherita Galbiati
Herausgegeben vonAlberto Tognoli

Inhaltsverzeichnis

  • A note on the real spectrum of analytic functions on an analytic manifold of dimension one.
  • Two bounds for the number of connected components of a real algebraic set.
  • Strongly algebraic vector bundles over ? d.
  • Local resolution of singularities.
  • On vector bundles and real algebraic morphisms.
  • On the stability index of noetherian rings.
  • Real parts of complex algebraic curves.
  • Sous-ensembles algébriques réels de codimension 2.
  • Real abelian varieties and the singularities of an integrable Hamiltonian system.
  • Chainable fields and real algebraic geometry.
  • Shape invariant lists and realization as plane real algebraic curves with doublepoints.
  • Moyennes des fonctions sous-analytiques, densite, cone tangent et tranches.
  • Nullstellensätze; conjectures and counterexamples.
  • Sur un théoreme de cheponkus.
  • Isotopies and non-recursive functions in real algebraic geometry.
  • Slices: Functions for abstract real analysis.
  • Complexity of the computation of cylindrical decomposition and topology of real algebraic curves using Thom's lemma.
  • On the topology of global semianalytic sets.
  • Piecewise linearization of subanalytic functions II.
  • Classification birationnelle des surfaces rationnelles reelles.
  • Sur les racines d'un polynome a coefficients series formelles.