Interval / Probabilistic Uncertainty and Non-classical Logics
herausgegeben von Van-Nam Huynh und weiterenLarge-scale data processing is important. Most successful applications of m- ern science and engineering, from discovering the human genome to predicting weather to controlling space missions, involve processing large amounts of data and large knowledge bases. The corresponding large-scale data and knowledge processing requires intensive use of computers. Computers are based on processing exact data values and truth values from the traditional 2-value logic. The ability of computers to perform fast data and knowledgeprocessingisbasedonthehardwaresupportforsuper-fastelementary computer operations, such as performing arithmetic operations with (exactly known) numbers and performing logical operations with binary (“true”-“false”) logical values. In practice, we need to go beyond exact data values and truth values from the traditional 2-value logic. In practical applications, we need to go beyond such operations. Input is only known with uncertainty. Let us ? rst illustrate this need on the example of operations with numbers. Hardware-supported computer operations (implicitly) assume that we know the exact values of the input quantities. In reality, the input data usually comes from measurements. Measurements are never 100% accurate. Due to such factors as imperfection of measurement - struments and impossibility to reduce noise level to 0, the measured value x of each input quantity is, in general, di? erent from the (unknown) actual value x of this quantity. It is therefore necessary to ? nd out how this input uncertainty def ? x = x ? x = 0 a? ects the results of data processing.