Lectures on Topological Fluid Mechanics von Mitchell A. Berger | Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 2 - 10, 2001 | ISBN 9783642008375

Lectures on Topological Fluid Mechanics

Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 2 - 10, 2001

von Mitchell A. Berger und weiteren, herausgegeben von Renzo L. Ricca
Mitwirkende
Autor / AutorinMitchell A. Berger
Herausgegeben vonRenzo L. Ricca
Autor / AutorinLouis H. Kauffman
Autor / AutorinBoris Khesin
Autor / AutorinH. Keith Moffatt
Autor / AutorinRenzo L. Ricca
Autor / AutorinDe Witt Sumners
Buchcover Lectures on Topological Fluid Mechanics | Mitchell A. Berger | EAN 9783642008375 | ISBN 3-642-00837-2 | ISBN 978-3-642-00837-5

Lectures on Topological Fluid Mechanics

Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 2 - 10, 2001

von Mitchell A. Berger und weiteren, herausgegeben von Renzo L. Ricca
Mitwirkende
Autor / AutorinMitchell A. Berger
Herausgegeben vonRenzo L. Ricca
Autor / AutorinLouis H. Kauffman
Autor / AutorinBoris Khesin
Autor / AutorinH. Keith Moffatt
Autor / AutorinRenzo L. Ricca
Autor / AutorinDe Witt Sumners

Helmholtz's seminal paper on vortex motion (1858) marks the beginning of what is now called topological fluid mechanics. After 150 years of work, the field has grown considerably. In the last several decades unexpected developments have given topological fluid mechanics new impetus, benefiting from the impressive progress in knot theory and geometric topology on the one hand, and in mathematical and computational fluid dynamics on the other.

This volume contains a wide-ranging collection of up-to-date, valuable research papers written by some of the most eminent experts in the field. Topics range from fundamental aspects of mathematical fluid mechanics, including topological vortex dynamics and magnetohydrodynamics, integrability issues, Hamiltonian structures and singularity formation, to DNA tangles and knotted DNAs in sedimentation. A substantial introductory chapter on knots and links, covering elements of modern braid theory and knot polynomials, as well as more advanced topics in knot classification, provides an invaluable addition to this material.