
×
A Course in Triangulations for Solving Equations with Deformations
von B. C. EavesInhaltsverzeichnis
- 1. Introduction.
- 2. Mathematical Background and Notation.
- 3. Subdivisions and Triangulations.
- 4. Standard Simplex S and Matrix Operations.
- 5. Subdivisions Q of $$ \mathbb{G}^n $$.
- 6. Freudenthal Triangulation F of
$$
\mathbb{G}^n
$$
, Part I. - 7. Sandwich Triangulation F|$$ \mathbb{G}^n-1 $$ x [0,1]).
- 8. Triangulation F|rS.
- 9. Squeeze and Shear.
- 10. Freudenthal Triangulation F of $$ \mathbb{G}^n $$, Part II.
- 11. Triangulation F|Q?.
- 12. Juxtapositioning with ?.
- 13. Subdivision P of $$ \mathbb{G}^n $$ x (??,1].
- 14. Coning Transverse Affinely Disjoint Subdivisions.
- 15. Triangulation V of V = cvx((S x 0) u ($$ \mathbb{G}^n $$x 1)).
- 16. Triangulation V[r, p] of S × [0,1] by Restricting, Squeezing, and Shearing V.
- 17. Variable Rate Refining Triangulation S of $$ \mathbb{G}^n $$ x [0,+?] by Juxtapositioning V[r, p]’s.
- 18. S+ an Augmentation of S.
- 19. References.