Mathematical Analysis and Numerical Methods for Science and Technology von Robert Dautray | Volume 6 Evolution Problems II | ISBN 9783642580048

Mathematical Analysis and Numerical Methods for Science and Technology

Volume 6 Evolution Problems II

von Robert Dautray und Jacques-Louis Lions, aus dem Französischen übersetzt von A. Craig
Mitwirkende
Autor / AutorinRobert Dautray
Überarbeitet vonI.N. Sneddon
Übersetzt vonA. Craig
Beiträge vonC. Bardos
Autor / AutorinJacques-Louis Lions
Beiträge vonM. Cessenat
Beiträge vonA. Kavenoky
Beiträge vonP. Lascaux
Beiträge vonB. Mercier
Beiträge vonO. Pironneau
Beiträge vonB. Scheurer
Beiträge vonR. Sentis
Buchcover Mathematical Analysis and Numerical Methods for Science and Technology | Robert Dautray | EAN 9783642580048 | ISBN 3-642-58004-1 | ISBN 978-3-642-58004-8

Mathematical Analysis and Numerical Methods for Science and Technology

Volume 6 Evolution Problems II

von Robert Dautray und Jacques-Louis Lions, aus dem Französischen übersetzt von A. Craig
Mitwirkende
Autor / AutorinRobert Dautray
Überarbeitet vonI.N. Sneddon
Übersetzt vonA. Craig
Beiträge vonC. Bardos
Autor / AutorinJacques-Louis Lions
Beiträge vonM. Cessenat
Beiträge vonA. Kavenoky
Beiträge vonP. Lascaux
Beiträge vonB. Mercier
Beiträge vonO. Pironneau
Beiträge vonB. Scheurer
Beiträge vonR. Sentis
The object ofthis chapter is to present a certain number ofresults on the linearised Navier-Stokes equations. The Navier-Stokes equations, which describe the motion of a viscous, incompressible fluid were introduced already, from the physical point of view, in §1 of Chap. IA. These equations are nonlinear. We study here the equations that emerge on linearisation from the solution (u = 0, p = 0). This is an interesting exercise in its own right. It corresponds to the case of a very slow flow, and also prepares the way for the study of the complete Navier-Stokes equations. This Chap. XIX is made up of two parts, devoted respectively to linearised stationary equations (or Stokes' problem), and to linearised evolution equations. Questions of existence, uniqueness, and regularity of solutions are considered from the variational point of view, making use of general results proved elsewhere. The functional spaces introduced for this purpose are themselves of interest and are therefore studiedcomprehensively.