Linear Programming Duality von Achim Bachem | An Introduction to Oriented Matroids | ISBN 9783642581526

Linear Programming Duality

An Introduction to Oriented Matroids

von Achim Bachem und Walter Kern
Mitwirkende
Autor / AutorinAchim Bachem
Autor / AutorinWalter Kern
Buchcover Linear Programming Duality | Achim Bachem | EAN 9783642581526 | ISBN 3-642-58152-8 | ISBN 978-3-642-58152-6

Linear Programming Duality

An Introduction to Oriented Matroids

von Achim Bachem und Walter Kern
Mitwirkende
Autor / AutorinAchim Bachem
Autor / AutorinWalter Kern

Inhaltsverzeichnis

  • 1 Prerequisites.
  • 7.1 Sets and Relations.
  • 10.2 Linear Algebra.
  • 14.3 Topology.
  • 15.4 Polyhedra.
  • 2 Linear Duality in Graphs.
  • 2.1 Some Definitions.
  • 2.2 FARKAS’ Lemma for Graphs.
  • 2.3 Subspaces Associated with Graphs.
  • 2.4 Planar Graphs.
  • 2.5 Further Reading.
  • 3 Linear Duality and Optimization.
  • 3.1 Optimization Problems.
  • 3.2 Recognizing Optimal Solutions.
  • 3.3 Further Reading.
  • 4 The FARKAS Lemma.
  • 4.1 A first version.
  • 4.2 Homogenization.
  • 4.3 Linearization.
  • 4.4 Delinearization.
  • 4.5 Dehomogenization.
  • 4.6 Further Reading.
  • 5 Oriented Matroids.
  • 5.1 Sign Vectors.
  • 5.2 Minors.
  • 5.3 Oriented Matroids.
  • 5.4 Abstract Orthogonality.
  • 5.5 Abstract Elimination Property.
  • 5.6 Elementary vectors.
  • 5.7 The Composition Theorem.
  • 5.8 Elimination Axioms.
  • 5.9 Approximation Axioms.
  • 5.10 Proof of FARKAS’ Lemma in OMs.
  • 5.11 Duality.
  • 5.12 Further Reading.
  • 6 Linear Programming Duality.
  • 6.1 The Dual Program.
  • 6.2 The Combinatorial Problem.
  • 6.3 Network Programming.
  • 6.4 Further Reading.
  • 7 Basic Facts in Polyhedral Theory.
  • 7.1 MINKOWSKI’S Theorem.
  • 7.2 Polarity.
  • 7.3 Faces of Polyhedral Cones.
  • 7.4 Faces and Interior Points.
  • 7.5 The Canonical Map.
  • 7.6 Lattices.
  • 7.7 Face Lattices of Polars.
  • 7.8 General Polyhedra.
  • 7.9 Further Reading.
  • 8 The Poset (O, ?).
  • 8.1 Simplifications.
  • 8.2 Basic Results.
  • 8.3 Shellability of Topes.
  • 8.4 Constructibility of O.
  • 8.5 Further Reading.
  • 9 Topological Realizations.
  • 9.1 Linear Sphere Systems.
  • 9.2 A Nonlinear OM.
  • 9.3 Sphere Systems.
  • 9.4 PL Ball Complexes.
  • 9.5 Further Reading.