Translation Planes von H. Lüneburg | ISBN 9783642674129

Translation Planes

von H. Lüneburg
Buchcover Translation Planes | H. Lüneburg | EAN 9783642674129 | ISBN 3-642-67412-7 | ISBN 978-3-642-67412-9

Translation Planes

von H. Lüneburg

Inhaltsverzeichnis

  • I Introduction.
  • 1. André’s Description of Translation Planes.
  • 2. An Alternative Description of Translation Planes.
  • 3. Homologies and Shears of Translation Planes.
  • 4. A Characterization of Pappian Planes.
  • 5. Quasifields.
  • II Generalized André Planes.
  • 6. Some Number Theoretic Tools.
  • 7. Finite Nearfield Planes.
  • 8. The Nearfield Plane of Order 9.
  • 9. Generalized André Planes.
  • 10. Finite Generalized André Planes.
  • 11. Homologies of Finite Generalized André Planes.
  • 12. The André Planes.
  • 13. The Hall Planes.
  • 14. The Collineation Group of a Generalized André Plane.
  • III Rank-3-Planes.
  • 15. Line Transitive Affine Planes.
  • 16. Affine Planes of Rank 3.
  • 17. Rank-3-Planes with an Orbit of Length 2 on the Line at Infinity.
  • 18. The Planes of Type R*p.
  • 19. The Planes of Type F*p.
  • 20. Exceptional Rank-3-Planes.
  • IV The Suzuki Groups and Their Geometries.
  • 21. The Suzuki Groups S(K,?).
  • 22. The Simplicity of the Suzuki Groups.
  • 23. The Lüneburg Planes.
  • 24. The Subgroups of the Suzuki Groups.
  • 25. Möbius Planes.
  • 26. The Möbius Planes Belonging to the Suzuki Groups.
  • 27. S(q) as a Collineation Group of PG(3, q).
  • 28. S(q) as a Collineation Group of a Plane of Order q2.
  • 29. Geometric Partitions.
  • 30. Rank-3-Groups.
  • 31. A Characterization of the Lüneburg Planes.
  • V Planes Admitting Many Shears.
  • 32. Unitary Polarities of Finite Desarguesian Projective Planes and Their Centralizers.
  • 33. A Characterization of A5.
  • 34. A Characterization of Galois Fields of Odd Characteristic.
  • 35. Groups Generated by Shears.
  • VI Flag Transitive Planes.
  • 36. The Uniqueness of the Desarguesian Plane of Order 8.
  • 37. Soluble Flag Transitive Collineation Groups.
  • 38. Some Characterizations of Finite Desarguesian Planes.
  • 39. Translation Planes Whose Collineation Group Acts DoublyTransitively on l?.
  • 40. A Theorem of Burmester and Hughes.
  • 41. Bol Planes.
  • VII Translation Planes of Order q2 Admitting SL(2, q) as a Collineation Group.
  • 42. Ovals in Finite Desarguesian Planes.
  • 43. Twisted Cubics.
  • 44. Irreducible Representations of SL(2,2r).
  • 45. The Hering and the Schäffer Planes.
  • 46. Three Planes of Order 25.
  • 47. Quasitransvections.
  • 48. Desarguesian Spreads in V(4, q).
  • 49. Translation Planes of Order q2 Admitting SL(2, q) as a Collineation Group.
  • 50. The Collineation Groups of the Hering and Schäffer Planes.
  • 51. The Theorem of Cofman-Prohaska.
  • 52. Prohaska’s Characterization of the Hall Planes.
  • Index of Special Symbols.