
×
Classical Fourier Transforms
von Komaravolu ChandrasekharanInhaltsverzeichnis
- I. Fourier transforms on L1 (-?,?).
- §1. Basic properties and examples.
- §2. The L1 -algebra.
- §3. Differentiability properties.
- §4. Localization, Mellin transforms.
- §5. Fourier series and Poisson’s summation formula.
- §6. The uniqueness theorem.
- §7. Pointwise summability.
- §8. The inversion formula.
- §9. Summability in the L1-norm.
- §10. The central limit theorem.
- §11. Analytic functions of Fourier transforms.
- §12. The closure of translations.
- §13. A general tauberian theorem.
- §14. Two differential equations.
- §15. Several variables.
- II. Fourier transforms on L2(-?,?).
- §1. Introduction.
- §2. Plancherel’s theorem.
- §3. Convergence and summability.
- §4. The closure of translations.
- §5. Heisenberg’s inequality.
- §6. Hardy’s theorem.
- §7. The theorem of Paley and Wiener.
- §8. Fourier series in L2(a, b).
- §9. Hardy’s interpolation formula.
- §10. Two inequalities of S. Bernstein.
- §11. Several variables.
- III. Fourier-Stieltjes transforms (one variable).
- §1. Basic properties.
- §2. Distribution functions, and characteristic functions.
- §3. Positive-definite functions.
- §4. A uniqueness theorem.
- Notes.
- References.