Classical Fourier Transforms von Komaravolu Chandrasekharan | ISBN 9783642740299

Classical Fourier Transforms

von Komaravolu Chandrasekharan
Buchcover Classical Fourier Transforms | Komaravolu Chandrasekharan | EAN 9783642740299 | ISBN 3-642-74029-4 | ISBN 978-3-642-74029-9

Classical Fourier Transforms

von Komaravolu Chandrasekharan

Inhaltsverzeichnis

  • I. Fourier transforms on L1 (-?,?).
  • §1. Basic properties and examples.
  • §2. The L1 -algebra.
  • §3. Differentiability properties.
  • §4. Localization, Mellin transforms.
  • §5. Fourier series and Poisson’s summation formula.
  • §6. The uniqueness theorem.
  • §7. Pointwise summability.
  • §8. The inversion formula.
  • §9. Summability in the L1-norm.
  • §10. The central limit theorem.
  • §11. Analytic functions of Fourier transforms.
  • §12. The closure of translations.
  • §13. A general tauberian theorem.
  • §14. Two differential equations.
  • §15. Several variables.
  • II. Fourier transforms on L2(-?,?).
  • §1. Introduction.
  • §2. Plancherel’s theorem.
  • §3. Convergence and summability.
  • §4. The closure of translations.
  • §5. Heisenberg’s inequality.
  • §6. Hardy’s theorem.
  • §7. The theorem of Paley and Wiener.
  • §8. Fourier series in L2(a, b).
  • §9. Hardy’s interpolation formula.
  • §10. Two inequalities of S. Bernstein.
  • §11. Several variables.
  • III. Fourier-Stieltjes transforms (one variable).
  • §1. Basic properties.
  • §2. Distribution functions, and characteristic functions.
  • §3. Positive-definite functions.
  • §4. A uniqueness theorem.
  • Notes.
  • References.