Gibbs Random Fields von V.A. Malyshev | Cluster Expansions | ISBN 9789401137089

Gibbs Random Fields

Cluster Expansions

von V.A. Malyshev und Robert A. Minlos
Mitwirkende
Autor / AutorinV.A. Malyshev
Autor / AutorinRobert A. Minlos
Buchcover Gibbs Random Fields | V.A. Malyshev | EAN 9789401137089 | ISBN 94-011-3708-0 | ISBN 978-94-011-3708-9

Gibbs Random Fields

Cluster Expansions

von V.A. Malyshev und Robert A. Minlos
Mitwirkende
Autor / AutorinV.A. Malyshev
Autor / AutorinRobert A. Minlos

Inhaltsverzeichnis

  • 1. Gibbs Fields (Basic Notions).
  • §0 First Acquaintance with Gibbs Fields.
  • §1 Gibbs Modifications.
  • §2 Gibbs Modifications under Boundary Conditions and Definition of Gibbs Fields by Means of Conditional Distributions.
  • 2. Semi-Invariants and Combinatorics.
  • §1 Semi-Invariants and Their Elementary Properties.
  • §2 Hermite-Itô-Wick Polynomials. Diagrams. Integration by Parts.
  • §3 Estimates on Moments and Semi-Invariants of Functional of Gaussian Families.
  • §4 Connectedness and Summation over Trees.
  • §5 Estimates on Intersection Number.
  • §6 Lattices and Computations of Their Möbius Functions.
  • §7 Estimate of Semi-Invariants of Partially Dependent Random Variables.
  • §8 Abstract Diagrams (Algebraic Approach).
  • 3. General Scheme of Cluster Expansion.
  • §1 Cluster Representation of Partition Functions and Ensembles of Subsets.
  • §2 Cluster Expansion of Correlation Functions.
  • §3 Limit Correlation Function and Cluster Expansion of Measures.
  • §4 Cluster Expansion and Asymptotics of Free Energy. Analyticity of Correlation Functions.
  • §5 Regions of Cluster Expansions for the Ising Model.
  • §6 Point Ensembles.
  • 4. Small Parameters in Interactions.
  • §1 Gibbs Modifications of Independent Fields with Bounded Potential.
  • §2 Unbounded Interactions in the Finite-Range Part of a Potential.
  • §3 Gibbs Modifications of d-Dependent Fields.
  • §4 Gibbs Point Field in Rv.
  • §5 Models with Continuous Time.
  • §6 Expansion of Semi-Invariants. Perturbation of a Gaussian Field.
  • §7 Perturbation of a Gaussian Field with Slow Decay of Correlations.
  • §8 Modifications of d-Markov Gaussian Fields (Interpolation of Inverse Covariance).
  • 5. Expansions Around Ground States (Low-Temperature Expansions).
  • §1 Discrete Spin: Countable Number of Ground States.
  • §2 Continuous Spin: UniqueGround State.
  • §3 Continuous Spin: Two Ground States.
  • 6. Decay of Correlations.
  • §1 Hierarchy of the Properties of Decay of Correlations.
  • §2 An Analytic Method of Estimation of Semi-Invariants of Bounded Quasi-Local Functionals.
  • §3 A Combinatorial Method of Estimation of Semi-Invariants in the Case of Exponentially-Regular Cluster Expansion.
  • §4 Slow (power) Decay of Correlations.
  • §5 Low-Temperature Region.
  • §6 Scaling Limit of a Random Field.
  • 7. Supplementary Topics and Applications.
  • §1 Gibbs Quasistates.
  • §2 Uniqueness of Gibbs Fields.
  • §3 Compactness of Gibbs Modifications.
  • §4 Gauge Field with Gauge Group Z2.
  • §5 Markov Processes with Local Interaction.
  • §6 Ensemble of External Contours.
  • Concluding Remarks.
  • Bibliographic Comments.
  • References.