
×
Analytic D-Modules and Applications
von Jan-Erik BjörkInhaltsverzeichnis
- I. The sheaf DX and its modules.
- II. Operations on D-modules.
- III. Holonomic D-modules.
- IV. Deligne modules.
- V. Regular holonomic D-modules.
- VI. b-functions.
- VII. Distributions and regular holonomic systems.
- VIII. Microdifferential operators.
- A: I Derived Categories.
- Summary.
- A: I.1 The construction of derived categories.
- A: I.2. Properties of derived categories.
- A: I.3. Injective resolutions.
- A: I.4. Spectral sequences.
- A: II Sheaf Theory.
- A: II.1. The category of sheaves.
- A: II.2. Operations on sheaves.
- A: II.3. The derived category of sheaves.
- A: II.4. Flabby sheaves.
- A: II.5. Sheaves on paracompact manifolds.
- A: II.6. Ringed spaces.
- A: II.7. Derived categories of modules.
- A: III Filtered rings.
- A: III.1. Filtered rings.
- A: III.2. Filtered sheaves of rings.
- A: III.3. Gabber’s Theorem.
- A: IV Homological algebra.
- A: IV.1. Basic facts in homological algebra.
- A: IV.2. Auslander regular rings.
- A: IV.3. Commutative algebra.
- A: IV.4. Filtered Auslander regular rings.
- A: V Complex analysis.
- A: V.2. Analysis on complex manifolds.
- A: V.4. The local Milnor fibrations.
- A: VI Analytic geometry.
- A: VI.1. Subanalytic sets.
- A: VII Symplectic analysis.
- A: VII.1. Symplectic algebra.
- A: VII:3. Lagrangian varieties.
- A: VII.4. Lagrangian varieties in generic position.
- References.
- List of notations.